5 steps wm11114wm11114 signature 1223→4243 rule {{{1, 2, 3}, {4, 3, 5}, {3, 6}} -> {{6, 7, 8}, {6, 9, 10}, {11, 8, 10}, {5, 2, 9}, {9, 9}, {1, 9}, {7, 5}, {8, 5}}} {{{1, 2, 3}, {4, 3, 5}, {3, 6}} -> {{6, 7, 8}, {6, 9, 10}, {11, 8, 10}, {5, 2, 9}, {9, 9}, {1, 9}, {7, 5}, {8, 5}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2,3},{4,3,5},{3,6}}{{6,7,8},{6,9,10},{11,8,10},{5,2,9},{9,9},{1,9},{7,5},{8,5}}},{{1,1,1},{1,1,1},{1,1}},5,"StatesPlotsList"],,,,,Event-by-event evolution:[◼]WolframModel[{{{1,2,3},{4,3,5},{3,6}}{{6,7,8},{6,9,10},{11,8,10},{5,2,9},{9,9},{1,9},{7,5},{8,5}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2,3},{4,3,5},{3,6}}{{6,7,8},{6,9,10},{11,8,10},{5,2,9},{9,9},{1,9},{7,5},{8,5}}},{{1,1,1},{1,1,1},{1,1}},13,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},-2-2y.[n.]+y.[1+n.]0,y.[1]1,y.[2]6[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]12(-4+5t2)Result after 5 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2,3},{4,3,5},{3,6}}{{6,7,8},{6,9,10},{11,8,10},{5,2,9},{9,9},{1,9},{7,5},{8,5}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"31|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2,3},{4,3,5},{3,6}}{{6,7,8},{6,9,10},{11,8,10},{5,2,9},{9,9},{1,9},{7,5},{8,5}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"31|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]