39 steps wm12518wm12518 signature 1223→4243 rule {{{1, 2, 3}, {4, 3, 5}, {6, 1}} -> {{7, 5, 4}, {5, 1, 2}, {8, 2, 7}, {3, 2, 9}, {10, 5}, {11, 5}, {12, 4}, {13, 9}}} {{{1, 2, 3}, {4, 3, 5}, {6, 1}} -> {{7, 5, 4}, {5, 1, 2}, {8, 2, 7}, {3, 2, 9}, {10, 5}, {11, 5}, {12, 4}, {13, 9}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2,3},{4,3,5},{6,1}}{{7,5,4},{5,1,2},{8,2,7},{3,2,9},{10,5},{11,5},{12,4},{13,9}}},{{1,1,1},{1,1,1},{1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,2,3},{4,3,5},{6,1}}{{7,5,4},{5,1,2},{8,2,7},{3,2,9},{10,5},{11,5},{12,4},{13,9}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2,3},{4,3,5},{6,1}}{{7,5,4},{5,1,2},{8,2,7},{3,2,9},{10,5},{11,5},{12,4},{13,9}}},{{1,1,1},{1,1,1},{1,1}},500,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for edge count:FindSequenceFunction[edgeCountList,t]-2+5tResult after 39 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2,3},{4,3,5},{6,1}}{{7,5,4},{5,1,2},{8,2,7},{3,2,9},{10,5},{11,5},{12,4},{13,9}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"39|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2,3},{4,3,5},{6,1}}{{7,5,4},{5,1,2},{8,2,7},{3,2,9},{10,5},{11,5},{12,4},{13,9}}},{{1,1,1},{1,1,1},{1,1}},<|"MaxEvents"39|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]