1 steps wm28827wm28827 signature 2223→8243 rule {{{1, 2, 3}, {4, 5, 6}, {1, 4}, {4, 1}} -> {{2, 7, 8}, {3, 9, 10}, {5, 11, 12}, {6, 13, 14}, {7, 11}, {11, 7}, {8, 14}, {14, 8}, {9, 13}, {13, 9}, {10, 12}, {12, 10}}} {{{1, 2, 3}, {4, 5, 6}, {1, 4}, {4, 1}} -> {{2, 7, 8}, {3, 9, 10}, {5, 11, 12}, {6, 13, 14}, {7, 11}, {11, 7}, {8, 14}, {14, 8}, {9, 13}, {13, 9}, {10, 12}, {12, 10}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,11},{11,7},{8,14},{14,8},{9,13},{13,9},{10,12},{12,10}}},{{1,1,1},{1,1,1},{1,1},{1,1}},1,"StatesPlotsList"],Event-by-event evolution:[◼]WolframModel[{{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,11},{11,7},{8,14},{14,8},{9,13},{13,9},{10,12},{12,10}}},{{1,1,1},{1,1,1},{1,1},{1,1}},<|"MaxEvents"1|>,"EventsStatesPlotsList"],Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,11},{11,7},{8,14},{14,8},{9,13},{13,9},{10,12},{12,10}}},{{1,1,1},{1,1,1},{1,1},{1,1}},1,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesResult after 1 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,11},{11,7},{8,14},{14,8},{9,13},{13,9},{10,12},{12,10}}},{{1,1,1},{1,1,1},{1,1},{1,1}},<|"MaxEvents"1|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2,3},{4,5,6},{1,4},{4,1}}{{2,7,8},{3,9,10},{5,11,12},{6,13,14},{7,11},{11,7},{8,14},{14,8},{9,13},{13,9},{10,12},{12,10}}},{{1,1,1},{1,1,1},{1,1},{1,1}},<|"MaxEvents"1|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]