12 steps wm9152wm9152 signature 22→32 rule {{{1, 2}, {2, 3}} -> {{1, 3}, {3, 4}, {4, 2}}} {{{1, 2}, {2, 3}} -> {{1, 3}, {3, 4}, {4, 2}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}}},{{1,1},{1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}}},{{1,1},{1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}}},{{1,1},{1,1}},25,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},-2-3y.[n.]+y.[3+n.]0,y.[1]1,y.[2]2,y.[3]3,y.[4]5,y.[5]7,y.[6]11,y.[7]16,y.[8]23,y.[9]34[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]DifferenceRootFunction{y.,n.},-3y.[n.]+y.[3+n.]0,y.[1]2,y.[2]3,y.[3]4,y.[4]6,y.[5]8,y.[6]12,y.[7]17,y.[8]24,y.[9]35[t]Result after 12 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],0510152025300200400600800100012001400Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}}},{{1,1},{1,1}},<|"MaxEvents"151|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}}},{{1,1},{1,1}},<|"MaxEvents"151|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]