10 steps wm9599wm9599 signature 32→52 rule {{{1, 2}, {1, 3}, {1, 4}} -> {{5, 6}, {5, 6}, {5, 2}, {3, 2}, {4, 3}}} {{{1, 2}, {1, 3}, {1, 4}} -> {{5, 6}, {5, 6}, {5, 2}, {3, 2}, {4, 3}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{5,6},{5,2},{3,2},{4,3}}},{{1,1},{1,1},{1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{5,6},{5,2},{3,2},{4,3}}},{{1,1},{1,1},{1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{5,6},{5,2},{3,2},{4,3}}},{{1,1},{1,1},{1,1}},24,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},-6-y.[n.]+y.[1+n.]-2y.[3+n.]+y.[5+n.]0,y.[1]1,y.[2]3,y.[3]4,y.[4]7,y.[5]11,y.[6]18,y.[7]27,y.[8]39,y.[9]55[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]DifferenceRootFunction{y.,n.},-11n.+(2-n.)y.[n.]+(-4+n.)y.[1+n.]+2y.[2+n.]+(4-2n.)y.[3+n.]-4y.[4+n.]+(-2+n.)y.[5+n.]+2y.[6+n.]0,y.[1]3,y.[2]5,y.[3]7,y.[4]11,y.[5]17,y.[6]27[t]Result after 10 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{5,6},{5,2},{3,2},{4,3}}},{{1,1},{1,1},{1,1}},<|"MaxEvents"84|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{5,6},{5,2},{3,2},{4,3}}},{{1,1},{1,1},{1,1}},<|"MaxEvents"84|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]